Главная Тесты ЕГЭ Книги Ресурсы Веб-каталог Форум О портале
сегодня: вторник, 25 февраля 2020
Новости мира науки

Подробности внедрения ионов лития в нанопровод из диоксида олова (13.12.2010)

Постоянные читатели Нанометра знают, что одним из неприятных эффектов, ограничивающих производительность и срок службы литий-ионных батарей, является разрушение электродов при внедрении и экстракции ионов лития. Неоднократно было показано, что наностержни и нанопроволоки наиболее эффективно переносят механические напряжения, возникающие при циклировании, и поэтому перспективны для использования в качестве материалов электродов. Исследователи из США и Китая пролили свет на процессы, протекающие при внедрении ионов лития в нанопровод SnO2.

Учёные изготовили наноразмерную электрохимическую ячейку, состоящую из нанопроводка SnO2 в качестве анода, катода из LiCoO2 и электролита на основе ионной жидкости. Всё это они поместили в просвечивающий электронный микроскоп высокого разрешения и стали заряжать батарейку.

Изначально нанопровод SnO2 был монокристаллическим, прямым и гладким, но в процессе зарядки он стал утолщаться, удлиняться и, как следствие, изгибаться и скручиваться. Реакция имела ярко выраженный фронт, который распространялся вдоль нанопровода от места его контакта с электролитом. Зарядка провода длиной 16 мкм и диаметром 188 нм заняла около получаса. При этом нанопровод удлинился на 60% и растолстел на 45%. В итоге его объём увеличился на 240%. Как мы видим, нанопровод SnO2 не растрескался и не развалился из-за напряжений в реакционном фронте, хотя в объемном виде диоксид олова довольно хрупок.

Детальное изучение фронта реакции показало наличие в нём большого числа подвижных дислокаций, что свидетельствует о существенных механических напряжениях вследствие структурного несоответствия насыщенной и ненасыщенной ионами лития фаз. После прохождения фронта нанопровод представляет собой композит из аморфной матрицы Li2O с наноразмерными кристаллическими включениями LixSn и Sn. Таким образом, можно предположить, что при зарядке на аноде протекают реакции:

4Li+ + SnO2 + 4e– → 2Li2O + Sn

Sn + xLi+ + xe– ↔ LixSn (0<x<4.4)

В свою очередь на катоде происходит окисление Co3+:

LiCoO2 → Li1–yCoO2 + yLi+ + ye–.

Образование облака дислокаций в реакционном фронте имеет ряд последствий. Во-первых, ядра дислокация могут служить каналами для внедрения ионов лития, что улучшает кинетику процесса. Во-вторых, дислокации придают нанопроводу пластичность, что позволяет ему не разрушиться при больших внутренних напряжениях.

При разряде батарейки, как и ожидалось, диаметр нанопровода слегка уменьшился, а LixSn превратился в Sn. Аморфный Li2O не претерпел изменений, т.к. первая реакция на аноде необратима.

С подробностями работы можно ознакомиться в статье «In Situ Observation of the Electrochemical Lithiation of a Single SnO2 Nanowire Electrode». Также доступны замечательные видеоролики о непростой жизни нанопроволок SnO2 внутри литий-ионной нанобатарейки.

Информация предоставлена: http://www.nanometer.ru/2010/12/13/litij_ionnie_batarei_238036.html

Год учителя

© Создание сайта, реклама в интернете - WebMar.ru
При использовании материалов с сайта гиперссылка обязательна.
наша почта